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Received 20 June 1978 

Abstract. The first order cumulant expansion of Niemeijer and van Leeuwen is combined 
with a variational method to find the ‘best’ value of a fixed point Hamiltonian depending 
upon a parameter, p .  A new method for calculating eigenvalues near this fixed point is 
proposed, based upon the neglect of terms proportional to the error neglected at the fixed 
point. This approach determines ap /aK unambiguously. Calculations are carried out for a 
few simple models. The results are more accurate than those of most other comparably 
simple approaches. 

1. Introduction 

Among the wide variety of real-space renormalisation-group (RSRG) approximations 
which are now available, there are two approaches which can be applied to a broad 
variety of problems: the cumulant expansion method (Niemeijer and van Leeuwen 
1974, 1976) and the variational method (Kadanoff et a1 1976). In this paper, we 
describe how these two methods may be combined. (See the parallel work of van 
Saarloos et a1 (1978) for a similar-but not identical-combination.) 

The new method has three attractive features. It is a very simple method, compar- 
able in complexity to the regular comulant and Migdal approximations (Midgal 1975a, 
1975b, Kadanoff 1976). The results from this method seem roughly as accurate as 
those derived from most other RSRG approximations. Also, this variational cumulant 
method provides us with insight into other variational methods. In particular, it permits 
the evaluation of ap/aK. Previous authors (see van Leeuwen 1978 for a review) have 
stressed that the ambiguity in ap/aK substantially weakens the viability of the varia- 
tional method. In the simple approximation outlined here, this viability is restored. 

2. Definition of method 

Since the variational cumulant method is a slightly modified form of the regular 
cumulant method, we will first review the regular cumulant and then present the 
modifications. In this paper we deal with a lattice with statistical variables ui at each 
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lattice site i. The Hamiltonian H of the system is some function of the IT’S. If {Sa) is a 
complete set of functions of the IT’S, then 

for some set of coupling constants Ka. 
The first step is to divide the lattice into blocks or cells, and assign to each cell a a 

new statistical variable pa. The cells are chosen so that the p variables form a lattice 
identical in structure (although different in lattice spacing) to the original IT lattice. By 
defining a weighting function W ( { p } ,  {IT}) we can define a new Hamiltonian H ’ { p }  of 
the p variables via the recursion relation: 

For most Hamiltonians, the sum involved must be approximated. In the cumulant 
expansion, one approximates this sum by first splitting H into two parts, H = Ho+ V, 
where Ho contains all the intracell interactions in H, and V contains all the intercell 
interactions. We can then expand H’ (for the general form of such an expansion, see 
Kendall 1952); 

~ ’ { p )  = In C w({pI, {IT}) exp(Ho{aI) + ( V ) H ~ + + ( E * ) H ~ + .  . . (3) 
(U} 

where we have defined E = V-( V), with the average being defined by 

One finds a first order cumulant approximation by neglecting all but the first two terms 
on the right-hand side of equation (3); the error incurred depends on and higher 
order terms in E. We then have an approximate recursion relation 

Our description of critical phenomena then involves two logically independent 
steps: first the determination of a fixed point and then the study of small deviations from 
the fixed point. In this paper, both steps are slightly different from those in the original 
cumulant expansion papers. 

At the fixed point, Ho and V are chosen variationally. We define a variational 
parameter p and let Ho and V be functions of p, where Ho now contains some but not 
necessarily all intracell interactions in H. Since the first order approximation is an 
upper bound variational approximation for the free energy, we can essentially minimise 
the error by varyingp so as to minimise the resulting approximation to the free energy at 
the fixed point. This allows us to determine the fixed point, and the value of the 
parameter at the fixed point. 

The second modification involves deviations from the fixed point. In previous work 
(Kadanoff et a1 1976, van Saarloos et a1 1978, Barber 1978) no successful scheme has 
been found for calculating parameter values away from the fixed point in such a way that 
accurate eigenvalues are obtained. Our method is sufficiently simple that one can see 
through the parameter setting problem for this case. We require in our calculation of 
the eigenvalues that the errors incurred when considering deviations from criticality be 
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proportional to the terms neglected at the fixed point and minimised at the fixed point; 
i.e. and higher order terms in E. This requirement sets the value of ap/aK, at the 
fixed point, at least for models with only one non-trivial fixed point coupling. 

3. Evaluation of fixed points 

As an example of a first order calculation, we consider the two-dimensional Ising model 
on a square lattice. Each variable ui takes on the values +1 and -1, and our 
Hamiltonian includes the three interactions defined below: 

so=c1 

s, = U1 

s*= up, 

I 

(nn) 

where indicates a sum over nearest-neighbour pairs. The lattice is divided into 
two-by-two square cells (see figure l), and each cell a is assigned a new statistical 
variable pa, also taking the values +1 and -1. Our weighting function is just a modified 
majority rule: 

where sgn(a) is the sign of the sum of the four u's in the a cell and is zero if the sum is 
zero. Let S ; ,  S;"' be defined by 

U(, U, in 
same cell 

s;", = uiuj. 
( n n )  

uz. U, n o t  
in same cell 

So, S1 and Sz" contain all the intracell interactions in H and 
interactions in H. We define Ho and V in  terms of a variational parameter p :  

contains all the intercell 

Ho(p)=KoSo+KlSl+Kz(l  +p)S2" (9a) 

V ( p )  = KZS;"* -pKzS2".  (9b) 

Figure 1. 2 X 2 cells on the square lattice. Each cell consists of four o-variables clustered 
around a p-variable. 0 =U, x = w .  
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When p = O  these reduce to the definitions of Ho and V in the regular cumulant 
expansion. Using the approximate recursion relation in equation ( S ) ,  we find a new 
Hamiltonian 

where Kb,  K \  and K ;  are functions of K O ,  K 1 ,  K 2  and p .  For each value of p, there 
exists a fixed-point Hamiltonian H*(p)  = Kg @ ) S O +  KT ( p ) S z .  The variational prin- 
ciple is then used to choose the proper value of p at the fixed point (see the appendix). 

The calculation described so far parallels that of van Saarloos et a1 (1978). This 
method can be easily extended to other lattice types and other models. In table 1, we list 
the value of the fixed point coupling thus obtained for the Ising model and the s-state 
Potts model and compare it to exactly known data and results from the regular cumulant 
method. Notice that the variational cumulant gives improved KT in  all cases. 

Table 1. Fixed point couplings for the Ising model and s-state Potts modelt. Only the 
values of K: are listed. 

Model Fixed point coupling 

Variational Regular Exact 
cumulant cumulant data 

k i n g  model 
Triangular lattice 0,2596 0.3356 0.2741 
Square lattice 0.3869 0.5186 0.4407 
Cubic lattice 0,2582 0.2978 0,2217 

s = 3  
s = 4  
s = 5  

s-state Potts model on a square lattice 
0.3173 0.4239 0.3350 
0.2713 0.3634 0.2747 
0.2382 0.3201 0,2349 

t The Hamiltonian for the s-state Potts model is given by 

H{c+l= KO C 1 + K2 C (sa,,,, - 1) 
(nn) 

where the U variables take on the integral values 1 through s. 

4. Deviations from fixed point 

In the fixed point calculation, we took care to neglect systematically all terms of order 
in our approximation. We will follow this same rule when considering devia- 

tions from the fixed point. Add an infinitesimal perturbation SH to the fixed point 
Hamiltonian H t .  Neglecting all terms second order or higher in E,  the resulting change 
in the new Hamiltonian is given by 

SH' = ("; + ((SH - (SH),;)(  v - ( V)Efg)),g. (11) 
It is convenient at this stage to split the perturbation into two terms, 6H = SHo+ SV, 
where 
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We can then rewrite SH’ as 

The first two terms are easily calculated. The third term is not easily calculated, but can 
be neglected since it  is proportional to our error at the fixed point. The last term is hard 
to calculate, and cannot be neglected since it is first order in E. However, we can make 
this term vanish by setting ap/aKa = 0. This removes the ambiguity in the value of 
ap/aK,. We have used our freedom in setting ap/aK, to avoid computing a second 
order cumulant in a first order approximation. However, the important point is that we 
required that all errors introduced in the approximation be systematically limited to 
second order or higher terms in E, our fixed point error. By setting the value of ap/aKa, 
we can fulfil this requirement without introducing unwieldy calculations. 

As stated, this method only works with models with one non-trivial coupling in V, 
since it is absolutely crucial that SV should be proportional to V once we set the value of 
dp/aK,. This is what allows us to neglect the third term in equation (13). 

Once ap/aKa has been set, the eigenvalues are easily obtained. Tables 2 ( a )  and 2(b)  
list the eigenvalues for the Ising model and s-state Potts model obtained via the 
variational cumulant?. Also listed are the exact data and results from the regular 
cumulant. The thermal eigenvalues found in the two cumulant methods are identical, 

Table 2. (a) Thermal (YT) and magnetic (YM) eigenvalues for the Ising model. (b) Thermal 
eigenvalues (yT) for the s-state Potts model. 

Eigenvalues 

Variational Regular Exact 
cumulant cumulant data 

(a) Lattice type 
Triangular lattice 

Square lattice 

Cubic lattice 

(b) s-value 
3 
4 
5 

YT 0,894 
YM 1.805 
YT 1,006 
YM 1.871 
YT 1.246 
YM 2.622 

1,117 
1.218 
1.305 

0.894 
2.022 
1,006 
2.146 
1.246 
2.788 

1,117 
1.218 
1,305 

1.0 
1.875 
1.0 
1.875 
1.587 
2.485 

(1.174)= 
(1.290)“ 

b - 

a Series values from Zwanzig and Ramshaw (1977) 
Known to be first order transition (Baxter 1973). 

t For another variational treatment of the s-state Potts model see den Nijs and Knops (1978) 
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The direct application of this method does not give the magnetic eigenvalues for the 
s-state Potts model for s > 2 since this perturbation leads to multiple-spin coupling 
terms which we cannot handle easily. However, a potential-moving trick offers some 
hope of simple answers for this case as well. 

Acknowledgements 

We are indebted to W van Saarloos, J M J van Leeuwen and A M M Pruisken for 
sending us a copy of their parallel and somewhat similar work prior to publication. 

Appendix: Recursion relation and fixed point for the Ising model on a square lattice 

The effective weighting function for a single cell is given by a product of W ( { p } ,  {U}) and 
exp(Ho) of the form 

(A.1) 

Here, the S’s stand for the portion of the previously defined S’s (see equation (6)) which 
lie within the cell. This effective Hamiltonian has a partition function 

exp(h(a, p ) )  = 8 1 + p  sgn(S1)) e x p [ 4 K o + K l S l + K ~ ( 1 + p ) S ~ l  

exp(f(p)) = 1 exp(h(cr, p ) )  = exp(4K0) 
(U} 

x {exp[4K~(1+ p )  + 4 K1p] + 4 exp( 2 Kip) + 2 + exp[-4 K2( l+  p)]} 

To find the fixed point, set K1 = 0. Then the last equation in (A.5) determines the 
value of (1 +p)K*(p),  since this requires that at the fixed point, 

To find the ‘best’ value of p ,  use the variational principle. This requires that one 
calculate the matrix 

Bij = aKi/aKj (A.7a) 

and the vector 

w i  = aK,/ap. (A.76) 
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The condition for extrema1 frec energy is that the left eigenvector of Bi, connected with 
the largest eigenvalue be orthogonal to the vector w. The net result of this calculation is 
the simple formula for p ,  

where the derivatives are taken at fixed K2. 
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